

Proton Induced Recoil Trajectories and The Angular Dependence of Single-Event Upset Cross-Section Measurements

R.A. Reed¹, P.W. Marshall², H. Kim³, P.J. McNulty⁴, B. Fodness⁵, T. Jordan², R. Reedy⁶, C. Tabbert⁶, S.T. Liu⁷, W. Heikkila⁷, S. Buchner⁸, K. LaBel¹

- 1. NASA/GSFC
- 2. Private Consultant
- 3. J&T/GSFC
- 4. Clemson University

- 5. SGT/GSFC
- 6. Peregrine Semiconductor
- 7. Honeywell SSEC
- 8. Orbital Sciences/GSFC

This work was supported by:

- NASA Electronic Parts and Packaging Program Electronics Radiation Characterization Project
- Defense Threat Reduction Agency under IACRO # 02-4039I

Background

- Proton induced recoil trajectories are historically considered to be a 2nd order effect in most microelectronic devices
 - Most proton-induced Single Event Upset (SEU) testing is carried out with the proton beam normal to the die surface
- In 1994 and 1995 Reed, et al. presented proton-induced SEU simulation results that predicted an angular dependence if:
 - The sensitive volume had at least one dimension sufficiently thin compared to the others, and
 - Critical charge was sufficiently large
- Very limited data available that shows an angular effect
 - Proton data presented by Gardic et al, at RADECS in 1995 showed angular effect data on a Silicon-On-Insulator (vendor unnamed) and a Matra (HM65656) Bulk CMOS memory devices
 - In 1997, we presented proton data at NSREC on the bulk device from Matra (HM65656). Our data did not show an angular effect.

Outline

- Proton-induced SEUs over proton beam angle-ofincidence
 - Experimentally determine if an angular effect exists
 - Investigate the relationship between proton energy, critical charge and the angular effect.
- Proton interaction effects on recoil trajectories and charge deposition in thin structures
 - Review and discuss the basic p+Silicon interaction mechanisms and determine how each induces an angular effect
- Modeling the Effects of Proton Beam Angle-of-Incidence
 - Compare experimental results to new simulation on test devices that are based on actual device geometries
- Conclusions

Devices Tested and Test Organizations

Peregrine Semiconductor 3.5 GHz Prescaler

- 0.5 ?m Ultra Thin Silicon (UTSi.™) Silicon-On-Sapphire (SOS) Process
- Gate Length = 0.5 ?m and Width = 1.5 ?m to 10 ?m
- Thickness of Silicon under gate = 0.098 ?m
- Testing performed by NASA Goddard Space Flight Center
- Testing performed at University of California at Davis and Indiana University

Honeywell 512K x 8 Static RAM

- 0.35 ?m RICMOS™ V Silicon-On-Insulator (SOI) Process
- Gate Length = 0.35 ?m and Width = 1 ?m
- Thickness of Silicon under gate = 0.21 ?m
- Testing performed by Honeywell SSEC
- Testing performed at Indiana University

63 MeV Proton Bit Error Events Peregrine Prescaler

158 MeV Proton-Induced Upsets in Honeywell 4M SRAM

Very Different Circuits Show an Angular Effect

- Experimental data shows sensitivity of SOI and SOS technologies to proton beam angle-of-incidence
- Two very different circuits and test conditions
 - The Honeywell device is a SRAM tested in static mode
 - Peregrine device is a high speed prescaler with inputs set at 3.5
 GHz
 - Angular effect is not a circuit phenomena
- Both technologies have sensitive volumes with large aspect ratios (max length / min length)
 - Peregrine is up to 100
 - Honeywell is up to 5
- What is the basic mechanism that causes the angular effect?

Proton-Induced Direct Ionization

- Direct ionization: primary proton interacts with electrons of the Silicon atom to liberate charge
- Can direction ionization cause the effect for the Peregrine prescaler?
 - Heavy ion threshold LET is ~ 2.5 MeV cm²/mg
 - To upset the prescaler, 63 MeV proton must have a path through a sensitive volume that is > 30 ? m
 - Maximum path length is ~10?m
- Honeywell SRAM?
 - 158 MeV proton must have a path through a sensitive volume that is > 150 ?m
 - Maximum path length is ~1 ?m
- Direction ionization cannot induce an upset in these devices at the test energies used for this study

Inelastic Scattering with Target Nucleus

Modeling the interaction

- GEANT is a Monte
 Carlo modeling tool
 that can simulate
 spallation reactions
- Use GEANT to Model recoil angle

Elastic Scattering with Target Nucleus

Comparing Nuclear Interactions

Which one dominates?

- Nuclear Inelastic cross section is >350 mb
- Inelastic cross section is more that a factor of 4 greater than elastic
- Forward directed recoils are dominated by inelastic
- Inelastic's dominateEnergies > 63 MeV

Not a general result

- Elastic cross section peak at 30 MeV
- Elastics may become important at 30 MeV

Data Trends are Consistent with Spallation Reaction

- Path length <u>increases</u> as incident proton angle <u>increases</u>
- More energy is deposited in sensitive volume at grazing angles
- This is consistent with the data on SOI and SOS devices

Modeling Energy Deposition from Spallation Reactions

- Clemson University Proton Interactions in Devices (CUPID)
- Monte Carlo simulation codes for spallation reaction
- Predicts the integral cross section for depositing energy in a sensitive volume (SV)
- Input parameters include
 - Proton energy
 - Proton incident angle
 - SV dimensions
 - Surrounding volume dimensions

Experimental Data and Modeling Results for Peregrine SOS Technology - Energy Dependence

Measured Data

Simulations

Experimental Data and Modeling Results for Peregrine SOS Technology - Energy Dependence

- Magnitude of angular effect depends on incident proton energy
 - Spallation products from 200 MeV p+Si inelastic collisions are more isotropic for LETs < 6
- Simulations agree with well with measured data near 0 and 90 degrees
- Contribution from elements other then Silicon can explain the disagreement between 30 and 60
 - GEANT simulations

Simulations

Measured Data

Experimental Data for Peregrine SOS Technology - Critical Charge Dependence

Device #3 has a 50% higher threshold LET

Conclusions

- New proton SEU data demonstrate enhanced sensitivity in SOI technologies, including SOS
 - Classical testing approach would under predict on-orbit SEU rate
 - This effect is not limited to SOI technologies. Any device with an aspect ratio >3 and a critical charge >20 fC is suspect
- Spallation reaction is the dominate mechanism for the devices tested, elastics may be important at 30 MeV
- Experimental data showed angular effect can depend on proton energy and critical charge
- New simulations result show "good" agreement with experiments over energy and critical charge
- Our findings impact both test planning and rate prediction approaches, and present methods may underestimate observed upset rates by > 5x